Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
bioRxiv ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38559198

RESUMEN

The genomic determinants that contribute to orthobunyavirus infection and pathogenesis are not well-defined. In this study, we harnessed the process of reassortment to understand which viral factors drive change in the replication and pathogenesis of La Crosse virus (LACV). We systematically reassorted the genomic segments of two genetically similar Lineage I LACV isolates into six unique reassortants. Despite the parental isolates having high levels of RNA and protein consensus, the reassortants demonstrate how minimal changes in RNA and protein structure can have significant changes in viral growth and reproduction in vitro in mammalian and insect models. We observed that swapping the S segment between isolates led to differences in replication and assembly resulting in one non-rescuable reassortant and one viable reassortant that exhibited an increase in viral growth dynamics. Switching the M segment led to changes in viral plaque phenotype and growth kinetics. L segment reassortants similarly differed in changes in viral growth dynamics. We further explored the M segment reassortants in a neonate mouse model and observed a role for the M segment in neuroinflammation and virulence. Through reassortment of the La Crosse virus genomic segments, we are able to further understand how genomic determinants of infection and pathogenesis operate in orthobunyaviruses. Future investigations will focus on identifying the specific molecular elements that govern the observed phenotypes in vitro and in vivo . Importance: La Crosse virus is the leading cause of pediatric arboviral encephalitis in the United States, yet it is largely unknown how each of the three genomic segments contribute to pathogenesis and disease. Our study utilizes genomic reassortment between two similar Lineage I LACV isolates to understand genomic determinants for differences in infection and pathogenesis phenotypes in vitro and in vivo. By identifying roles for each segment in observed outcomes, we are able to plan further studies for molecular characterization of these phenotypes. Additionally, it is imperative to continue to characterize orthobunyavirus function since climate change will expand the range and prevalence of arthropod-borne diseases such as LACV in the United States.

2.
bioRxiv ; 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38293111

RESUMEN

Alphaviruses encode an error-prone RNA-dependent RNA polymerase (RdRp), nsP4, required for genome synthesis, yet how the RdRp functions in the complete alphavirus life cycle is not well-defined. Previous work using chikungunya virus (CHIKV) has established the importance of the nsP4 residue cysteine 483 in maintaining viral genetic fidelity. Given the location of residue C483 in the nsP4 palm domain, we hypothesized that other residues within this domain and surrounding subdomains would also contribute to polymerase function. To test this hypothesis, we designed a panel of nsP4 variants via homology modeling based on the Coxsackievirus B3 3 polymerase. We rescued each variant in both mammalian and mosquito cells and discovered that the palm domain and ring finger subdomain contribute to polymerase host-specific replication and genetic stability. Surprisingly, in mosquito cells, these variants in the ring finger and palm domain were replication competent and produced viral structural proteins, but they were unable to produce infectious progeny, indicating a yet uncharacterized role for the polymerase in viral assembly. Finally, we have identified additional residues in the nsP4 palm domain that influence the genetic diversity of the viral progeny, potentially via an alteration in NTP binding and/or discrimination by the polymerase. Taken together, these studies highlight that distinct nsP4 subdomains regulate multiple processes of the alphavirus life cycle, placing nsP4 in a central role during the switch from RNA synthesis to packaging and assembly.

3.
Nat Cardiovasc Res ; 2(10): 899-916, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38076343

RESUMEN

Patients with coronavirus disease 2019 (COVID-19) present increased risk for ischemic cardiovascular complications up to 1 year after infection. Although the systemic inflammatory response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection likely contributes to this increased cardiovascular risk, whether SARS-CoV-2 directly infects the coronary vasculature and attendant atherosclerotic plaques remains unknown. Here we report that SARS-CoV-2 viral RNA is detectable and replicates in coronary lesions taken at autopsy from severe COVID-19 cases. SARS-CoV-2 targeted plaque macrophages and exhibited a stronger tropism for arterial lesions than adjacent perivascular fat, correlating with macrophage infiltration levels. SARS-CoV-2 entry was increased in cholesterol-loaded primary macrophages and dependent, in part, on neuropilin-1. SARS-CoV-2 induced a robust inflammatory response in cultured macrophages and human atherosclerotic vascular explants with secretion of cytokines known to trigger cardiovascular events. Our data establish that SARS-CoV-2 infects coronary vessels, inducing plaque inflammation that could trigger acute cardiovascular complications and increase the long-term cardiovascular risk.

4.
bioRxiv ; 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37961096

RESUMEN

Alphaviruses infect both mammals and insects, yet the distinct mechanisms that alphaviruses use to infect different hosts are not well defined. In this study, we characterize CHIKV E1 variants in the fusion loop (E1-M88L) and hinge region (E1-N20Y) in vitro and in vivo to understand how these regions of the E1 glycoprotein contribute to host-specific infection. Through cell culture assays, we found that CHIKV E1-N20Y enhanced infectivity in mosquito cells while the CHIKV E1-M88L variant enhanced virus binding and infectivity in both BHK-21 and C6/36 cells, and led to changes in the virus cholesterol-dependence in BHK-21 cells. Given these in vitro results and that residue E1-M88L is in a defined Mxra8 interacting domain, we hypothesized that this residue may be important for receptor usage. However, while the CHIKV E1-M88L variant increased replication in Mxra8-deficient mice compared to WT CHIKV, it was attenuated in vitro in mouse fibroblasts, suggesting that residue E1-M88 may function in a cell-type dependent manner to alter entry. Finally, using molecular dynamics to understand how potential changes in the E1 glycoprotein may impact the CHIKV glycoprotein E1-E2 complex, we found that E1-M88L and other E1 domain II variants lead to changes in both E1 and E2 dynamics. Taken together, these studies show that key residues in the CHIKV E1 fusion loop and hinge region function through changes in E1-E2 dynamics to facilitate cell- and host-dependent entry. Importance: Arthropod-borne viruses (arboviruses) are significant global public health threats, and their continued emergence around the world highlights the need to understand how these viruses replicate at the molecular level. The alphavirus class II glycoproteins are critical for virus entry in mosquitoes and mammals, yet how these proteins function is not completely understood. Therefore, to address these gaps in our knowledge, it is critical to dissect how distinct glycoprotein domains function in vitro and in vivo . Here, we show that changes in the CHIKV E1 fusion loop and hinge contribute to host-specific entry and E1-E2 dynamics, furthering our knowledge of how alphaviruses infect mammals and insects.

5.
J Virol ; 97(10): e0050723, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37768083

RESUMEN

IMPORTANCE: Generation of virus-host protein-protein interactions (PPIs) maps may provide clues to uncover SARS-CoV-2-hijacked cellular processes. However, these PPIs maps were created by expressing each viral protein singularly, which does not reflect the life situation in which certain viral proteins synergistically interact with host proteins. Our results reveal the host-viral protein-protein interactome of SARS-CoV-2 NSP3, NSP4, and NSP6 expressed individually or in combination. Furthermore, REEP5/TRAM1 complex interacts with NSP3 at ROs and promotes viral replication. The significance of our research is identifying virus-host interactions that may be targeted for therapeutic intervention.


Asunto(s)
Proteasas Similares a la Papaína de Coronavirus , Interacciones Microbiota-Huesped , Glicoproteínas de Membrana , Proteínas de la Membrana , Proteínas de Transporte de Membrana , SARS-CoV-2 , Replicación Viral , Humanos , COVID-19/virología , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Unión Proteica , Mapas de Interacción de Proteínas , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteasas Similares a la Papaína de Coronavirus/metabolismo
6.
Nat Commun ; 14(1): 4668, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537212

RESUMEN

Chikungunya virus (CHIKV) infection has been associated with severe cardiac manifestations, yet, how CHIKV infection leads to heart disease remains unknown. Here, we leveraged both mouse models and human primary cardiac cells to define the mechanisms of CHIKV heart infection. Using an immunocompetent mouse model of CHIKV infection as well as human primary cardiac cells, we demonstrate that CHIKV directly infects and actively replicates in cardiac fibroblasts. In immunocompetent mice, CHIKV is cleared from cardiac tissue without significant damage through the induction of a local type I interferon response from both infected and non-infected cardiac cells. Using mice deficient in major innate immunity signaling components, we found that signaling through the mitochondrial antiviral-signaling protein (MAVS) is required for viral clearance from the heart. In the absence of MAVS signaling, persistent infection leads to focal myocarditis and vasculitis of the large vessels attached to the base of the heart. Large vessel vasculitis was observed for up to 60 days post infection, suggesting CHIKV can lead to vascular inflammation and potential long-lasting cardiovascular complications. This study provides a model of CHIKV cardiac infection and mechanistic insight into CHIKV-induced heart disease, underscoring the importance of monitoring cardiac function in patients with CHIKV infections.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Enfermedades Transmisibles , Cardiopatías , Vasculitis , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Inflamación , Infección Persistente , Replicación Viral
7.
bioRxiv ; 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37645908

RESUMEN

COVID-19 patients present higher risk for myocardial infarction (MI), acute coronary syndrome, and stroke for up to 1 year after SARS-CoV-2 infection. While the systemic inflammatory response to SARS-CoV-2 infection likely contributes to this increased cardiovascular risk, whether SARS-CoV-2 directly infects the coronary vasculature and attendant atherosclerotic plaques to locally promote inflammation remains unknown. Here, we report that SARS-CoV-2 viral RNA (vRNA) is detectable and replicates in coronary atherosclerotic lesions taken at autopsy from patients with severe COVID-19. SARS-CoV-2 localizes to plaque macrophages and shows a stronger tropism for arterial lesions compared to corresponding perivascular fat, correlating with the degree of macrophage infiltration. In vitro infection of human primary macrophages highlights that SARS-CoV-2 entry is increased in cholesterol-loaded macrophages (foam cells) and is dependent, in part, on neuropilin-1 (NRP-1). Furthermore, although viral replication is abortive, SARS-CoV-2 induces a robust inflammatory response that includes interleukins IL-6 and IL-1ß, key cytokines known to trigger ischemic cardiovascular events. SARS-CoV-2 infection of human atherosclerotic vascular explants recapitulates the immune response seen in cultured macrophages, including pro-atherogenic cytokine secretion. Collectively, our data establish that SARS-CoV-2 infects macrophages in coronary atherosclerotic lesions, resulting in plaque inflammation that may promote acute CV complications and long-term risk for CV events.

8.
J Virol ; 97(8): e0081923, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37578236

RESUMEN

Arthropod-borne viruses (arboviruses) are an emerging and evolving global public health threat, with limited antiviral treatments or vaccines available. La Crosse virus (LACV) from the Bunyavirales order is responsible for pediatric encephalitis cases in the United States, yet little is known about the infectivity of LACV. Given the structural similarities between class II fusion glycoproteins of LACV and chikungunya virus (CHIKV), an alphavirus from the Togaviridae family, we hypothesized that LACV would share similar entry mechanisms with CHIKV. To test this hypothesis, we performed cholesterol-depletion and repletion assays and used cholesterol-modulating compounds to study LACV entry and replication. We found that LACV entry was cholesterol dependent, while replication was less affected by cholesterol manipulation. In addition, we generated single-point mutants in the LACV Gc ij loop that corresponded to known CHIKV residues important for virus entry. We found that a conserved histidine and alanine residue in the Gc ij loop impaired virus infectivity and attenuated LACV replication in vitro and in vivo. Finally, we took an evolution-based approach to explore how the LACV glycoprotein evolves in mosquitoes and mice. We found multiple variants that cluster in the Gc glycoprotein head domain, providing evidence for the Gc glycoprotein as a contributor to LACV adaptation. Together, these results begin to characterize the mechanisms of LACV infectivity and how the LACV glycoprotein contributes to replication and pathogenesis. IMPORTANCE Vector-borne viruses are significant health threats that lead to devastating disease worldwide. The emergence of arboviruses, in addition to the lack of effective antivirals or vaccines, highlights the need to study how arboviruses replicate at the molecular level. One potential antiviral target is the class II fusion glycoprotein. Alphaviruses, flaviviruses, and bunyaviruses encode a class II fusion glycoprotein that contains strong structural similarities at the tip of domain II. Here, we show that the bunyavirus La Crosse virus uses a cholesterol-dependent entry pathway similar to the alphavirus chikungunya virus, and residues in the ij loop are important for virus infectivity in vitro and replication in mice. These studies show that genetically diverse viruses may use similar pathways through conserved structure domains, suggesting that these viruses may be targets for broad-spectrum antivirals in multiple arboviral families.


Asunto(s)
Arbovirus , Encefalitis de California , Virus La Crosse , Animales , Ratones , Antivirales/farmacología , Glicoproteínas/genética , Virus La Crosse/genética , Mosquitos Vectores , Estados Unidos , Replicación Viral
9.
bioRxiv ; 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36865275

RESUMEN

Arthropod-borne viruses (arboviruses) are an emerging and evolving global public health threat with little to no antiviral treatments. La Crosse virus (LACV) from the Bunyavirales order is responsible for pediatric encephalitis cases in the United States, yet little is known about the infectivity of LACV. Given the structural similarities between class II fusion glycoproteins of LACV and chikungunya virus (CHIKV), an alphavirus from the Togaviridae family, we hypothesized that LACV would share similar entry mechanisms to CHIKV. To test this hypothesis, we performed cholesterol-depletion and repletion assays and used cholesterol modulating compounds to study LACV entry and replication. We found that LACV entry was cholesterol-dependent while replication was less affected by cholesterol manipulation. In addition, we generated single point mutants in the LACV ij loop that corresponded to known CHIKV residues important for virus entry. We found that a conserved histidine and alanine residue in the Gc ij loop impaired virus infectivity and attenuate LACV in vitro and in vivo . Finally, we took an evolution-based approach to explore how the LACV glycoprotein evolution in mosquitoes and mice. We found multiple variants that cluster in the Gc glycoprotein head domain, supporting the Gc glycoprotein as a target for LACV adaptation. Together, these results begin to characterize the mechanisms of LACV infectivity and how the LACV glycoprotein contributes to infectivity and pathogenesis. Importance: Vector-borne arboviruses are significant health threats leading to devastating disease worldwide. This emergence and the fact that there are little to no vaccines or antivirals targeting these viruses highlights the need to study how arboviruses replicate at the molecular level. One potential antiviral target is the class II fusion glycoprotein. Alphaviruses, flaviviruses, and bunyaviruses encode a class II fusion glycoprotein that contain strong structural similarities in the tip of domain II. Here we show that the bunyavirus La Crosse virus uses similar mechanisms to entry as the alphavirus chikungunya virus and residues in the ij loop are important for virus infectivity. These studies show that genetically diverse viruses use similar mechanisms through concerned structure domains, suggesting these may be a target for broad-spectrum antivirals to multiple arbovirus families.

10.
Nat Commun ; 13(1): 5926, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36319618

RESUMEN

Although microbial populations in the gut microbiome are associated with COVID-19 severity, a causal impact on patient health has not been established. Here we provide evidence that gut microbiome dysbiosis is associated with translocation of bacteria into the blood during COVID-19, causing life-threatening secondary infections. We first demonstrate SARS-CoV-2 infection induces gut microbiome dysbiosis in mice, which correlated with alterations to Paneth cells and goblet cells, and markers of barrier permeability. Samples collected from 96 COVID-19 patients at two different clinical sites also revealed substantial gut microbiome dysbiosis, including blooms of opportunistic pathogenic bacterial genera known to include antimicrobial-resistant species. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data indicates that bacteria may translocate from the gut into the systemic circulation of COVID-19 patients. These results are consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID-19.


Asunto(s)
Bacteriemia , COVID-19 , Coinfección , Microbioma Gastrointestinal , Ratones , Animales , Disbiosis/microbiología , Antibacterianos , SARS-CoV-2 , Bacterias
11.
PLoS Biol ; 20(3): e3001592, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35358182

RESUMEN

Gastrointestinal effects associated with Coronavirus Disease 2019 (COVID-19) are highly variable for reasons that are not understood. In this study, we used intestinal organoid-derived cultures differentiated from primary human specimens as a model to examine interindividual variability. Infection of intestinal organoids derived from different donors with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) resulted in orders of magnitude differences in virus replication in small intestinal and colonic organoid-derived monolayers. Susceptibility to infection correlated with angiotensin I converting enzyme 2 (ACE2) expression level and was independent of donor demographic or clinical features. ACE2 transcript levels in cell culture matched the amount of ACE2 in primary tissue, indicating that this feature of the intestinal epithelium is retained in the organoids. Longitudinal transcriptomics of organoid-derived monolayers identified a delayed yet robust interferon signature, the magnitude of which corresponded to the degree of SARS-CoV-2 infection. Interestingly, virus with the Omicron variant spike (S) protein infected the organoids with the highest infectivity, suggesting increased tropism of the virus for intestinal tissue. These results suggest that heterogeneity in SARS-CoV-2 replication in intestinal tissues results from differences in ACE2 levels, which may underlie variable patient outcomes.


Asunto(s)
COVID-19 , Enzima Convertidora de Angiotensina 2/genética , Humanos , Organoides , SARS-CoV-2
12.
bioRxiv ; 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35262080

RESUMEN

The microbial populations in the gut microbiome have recently been associated with COVID-19 disease severity. However, a causal impact of the gut microbiome on COVID-19 patient health has not been established. Here we provide evidence that gut microbiome dysbiosis is associated with translocation of bacteria into the blood during COVID-19, causing life-threatening secondary infections. Antibiotics and other treatments during COVID-19 can potentially confound microbiome associations. We therefore first demonstrate in a mouse model that SARS-CoV-2 infection can induce gut microbiome dysbiosis, which correlated with alterations to Paneth cells and goblet cells, and markers of barrier permeability. Comparison with stool samples collected from 96 COVID-19 patients at two different clinical sites also revealed substantial gut microbiome dysbiosis, paralleling our observations in the animal model. Specifically, we observed blooms of opportunistic pathogenic bacterial genera known to include antimicrobial-resistant species in hospitalized COVID-19 patients. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data obtained from these patients indicates that bacteria may translocate from the gut into the systemic circulation of COVID-19 patients. These results are consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID-19.

13.
J Virol ; 96(2): e0177421, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34757841

RESUMEN

Alphaviruses and flaviviruses have class II fusion glycoproteins that are essential for virion assembly and infectivity. Importantly, the tip of domain II is structurally conserved between the alphavirus and flavivirus fusion proteins, yet whether these structural similarities between virus families translate to functional similarities is unclear. Using in vivo evolution of Zika virus (ZIKV), we identified several novel emerging variants, including an envelope glycoprotein variant in ß-strand c (V114M) of domain II. We have previously shown that the analogous ß-strand c and the ij loop, located in the tip of domain II of the alphavirus E1 glycoprotein, are important for infectivity. This led us to hypothesize that flavivirus E ß-strand c also contributes to flavivirus infection. We generated this ZIKV glycoprotein variant and found that while it had little impact on infection in mosquitoes, it reduced replication in human cells and mice and increased virus sensitivity to ammonium chloride, as seen for alphaviruses. In light of these results and given our alphavirus ij loop studies, we mutated a conserved alanine at the tip of the flavivirus ij loop to valine to test its effect on ZIKV infectivity. Interestingly, this mutation inhibited infectious virion production of ZIKV and yellow fever virus, but not West Nile virus. Together, these studies show that shared domains of the alphavirus and flavivirus class II fusion glycoproteins harbor structurally analogous residues that are functionally important and contribute to virus infection in vivo.IMPORTANCE Arboviruses are a significant global public health threat, yet there are no antivirals targeting these viruses. This problem is in part due to our lack of knowledge of the molecular mechanisms involved in the arbovirus life cycle. In particular, virus entry and assembly are essential processes in the virus life cycle and steps that can be targeted for the development of antiviral therapies. Therefore, understanding common, fundamental mechanisms used by different arboviruses for entry and assembly is essential. In this study, we show that flavivirus and alphavirus residues located in structurally conserved and analogous regions of the class II fusion proteins contribute to common mechanisms of entry, dissemination, and infectious-virion production. These studies highlight how class II fusion proteins function and provide novel targets for development of antivirals.


Asunto(s)
Alphavirus/fisiología , Flavivirus/fisiología , Proteínas Virales de Fusión/metabolismo , Virión/metabolismo , Replicación Viral , Células A549 , Alphavirus/efectos de los fármacos , Cloruro de Amonio/farmacología , Animales , Culicidae/virología , Flavivirus/efectos de los fármacos , Humanos , Interferón Tipo I/deficiencia , Ratones , Ratones Mutantes , Mutación , Dominios Proteicos , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/genética , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Virión/genética , Ensamble de Virus/genética , Internalización del Virus/efectos de los fármacos , Replicación Viral/genética , Virus Zika/efectos de los fármacos , Virus Zika/fisiología , Infección por el Virus Zika/virología
14.
J Virol ; 96(4): e0158621, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34935436

RESUMEN

Chikungunya virus (CHIKV) is a reemerging arthropod-borne alphavirus and a serious threat to human health. Therefore, efforts toward elucidating how this virus causes disease and the molecular mechanisms underlying steps of the viral replication cycle are crucial. Using an in vivo transmission system that allows intrahost evolution, we identified an emerging CHIKV variant carrying a mutation in the E1 glycoprotein (V156A) in the serum of mice and saliva of mosquitoes. E1 V156A has since emerged in humans during an outbreak in Brazil, cooccurring with a second mutation, E1 K211T, suggesting an important role for these residues in CHIKV biology. Given the emergence of these variants, we hypothesized that they function to promote CHIKV infectivity and subsequent disease. Here, we show that E1 V156A and E1 K211T modulate virus attachment and fusion and impact binding to heparin, a homolog of heparan sulfate, a key entry factor on host cells. These variants also exhibit differential neutralization by antiglycoprotein monoclonal antibodies, suggesting structural impacts on the particle that may be responsible for altered interactions at the host membrane. Finally, E1 V156A and E1 K211T exhibit increased titers in an adult arthritic mouse model and induce increased foot-swelling at the site of injection. Taken together, this work has revealed new roles for E1 where discrete regions of the glycoprotein are able to modulate cell attachment and swelling within the host. IMPORTANCE Alphaviruses represent a growing threat to human health worldwide. The reemerging alphavirus chikungunya virus (CHIKV) has rapidly spread to new geographic regions in the last several decades, causing overwhelming outbreaks of disease, yet there are no approved vaccines or therapeutics. The CHIKV glycoproteins are key determinants of CHIKV adaptation and virulence. In this study, we identify and characterize the emerging E1 glycoprotein variants, V156A and K211T, that have since emerged in nature. We demonstrate that E1 V156A and K211T function in virus attachment to cells, a role that until now has only been attributed to specific residues of the CHIKV E2 glycoprotein. We also demonstrate E1 V156A and K211T increase foot-swelling of the ipsilateral foot in mice infected with these variants. Observing that these variants and other pathogenic variants occur at the E1-E1 interspike interface, we highlight this structurally important region as critical for multiple steps during CHIKV infection. Together, these studies further define the function of E1 in CHIKV infection and can inform the development of therapeutic or preventative strategies.


Asunto(s)
Virus Chikungunya/fisiología , Virus Chikungunya/patogenicidad , Proteínas del Envoltorio Viral/metabolismo , Acoplamiento Viral , Aedes/virología , Animales , Anticuerpos Monoclonales/inmunología , Fiebre Chikungunya/patología , Fiebre Chikungunya/transmisión , Fiebre Chikungunya/virología , Virus Chikungunya/genética , Virus Chikungunya/inmunología , Modelos Animales de Enfermedad , Heparina/metabolismo , Humanos , Inflamación , Ratones , Mutación , Pruebas de Neutralización , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Internalización del Virus , Replicación Viral
15.
Viruses ; 13(12)2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34960706

RESUMEN

Epidemic RNA viruses seem to arise year after year leading to countless infections and devastating disease. SARS-CoV-2 is the most recent of these viruses, but there will undoubtedly be more to come. While effective SARS-CoV-2 vaccines are being deployed, one approach that is still missing is effective antivirals that can be used at the onset of infections and therefore prevent pandemics. Here, we screened FDA-approved compounds against SARS-CoV-2. We found that atovaquone, a pyrimidine biosynthesis inhibitor, is able to reduce SARS-CoV-2 infection in human lung cells. In addition, we found that berberine chloride, a plant-based compound used in holistic medicine, was able to inhibit SARS-CoV-2 infection in cells through direct interaction with the virion. Taken together, these studies highlight potential avenues of antiviral development to block emerging viruses. Such proactive approaches, conducted well before the next pandemic, will be essential to have drugs ready for when the next emerging virus hits.


Asunto(s)
Antivirales/farmacología , Atovacuona/farmacología , Berberina/farmacología , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Células Epiteliales Alveolares , Animales , Berberina/química , Proliferación Celular/efectos de los fármacos , Cloruros/química , Cloruros/farmacología , Chlorocebus aethiops , Sinergismo Farmacológico , Humanos , Proguanil/farmacología , Células Vero , Virión/efectos de los fármacos
16.
J Thromb Haemost ; 19(12): 3139-3153, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34538015

RESUMEN

OBJECTIVE: Heightened inflammation, dysregulated immunity, and thrombotic events are characteristic of hospitalized COVID-19 patients. Given that platelets are key regulators of thrombosis, inflammation, and immunity they represent prime candidates as mediators of COVID-19-associated pathogenesis. The objective of this study was to understand the contribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to the platelet phenotype via phenotypic (activation, aggregation) and transcriptomic characterization. APPROACH AND RESULTS: In a cohort of 3915 hospitalized COVID-19 patients, we analyzed blood platelet indices collected at hospital admission. Following adjustment for demographics, clinical risk factors, medication, and biomarkers of inflammation and thrombosis, we find platelet count, size, and immaturity are associated with increased critical illness and all-cause mortality. Bone marrow, lung tissue, and blood from COVID-19 patients revealed the presence of SARS-CoV-2 virions in megakaryocytes and platelets. Characterization of COVID-19 platelets found them to be hyperreactive (increased aggregation, and expression of P-selectin and CD40) and to have a distinct transcriptomic profile characteristic of prothrombotic large and immature platelets. In vitro mechanistic studies highlight that the interaction of SARS-CoV-2 with megakaryocytes alters the platelet transcriptome, and its effects are distinct from the coronavirus responsible for the common cold (CoV-OC43). CONCLUSIONS: Platelet count, size, and maturity associate with increased critical illness and all-cause mortality among hospitalized COVID-19 patients. Profiling tissues and blood from COVID-19 patients revealed that SARS-CoV-2 virions enter megakaryocytes and platelets and associate with alterations to the platelet transcriptome and activation profile.


Asunto(s)
COVID-19 , Trombosis , Plaquetas , Humanos , SARS-CoV-2 , Índice de Severidad de la Enfermedad
17.
Sci Adv ; 7(37): eabh2434, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34516880

RESUMEN

Given the evidence for a hyperactive platelet phenotype in COVID-19, we investigated effector cell properties of COVID-19 platelets on endothelial cells (ECs). Integration of EC and platelet RNA sequencing revealed that platelet-released factors in COVID-19 promote an inflammatory hypercoagulable endotheliopathy. We identified S100A8 and S100A9 as transcripts enriched in COVID-19 platelets and were induced by megakaryocyte infection with SARS-CoV-2. Consistent with increased gene expression, the heterodimer protein product of S100A8/A9, myeloid-related protein (MRP) 8/14, was released to a greater extent by platelets from COVID-19 patients relative to controls. We demonstrate that platelet-derived MRP8/14 activates ECs, promotes an inflammatory hypercoagulable phenotype, and is a significant contributor to poor clinical outcomes in COVID-19 patients. Last, we present evidence that targeting platelet P2Y12 represents a promising candidate to reduce proinflammatory platelet-endothelial interactions. Together, these findings demonstrate a previously unappreciated role for platelets and their activation-induced endotheliopathy in COVID-19.

18.
Nat Microbiol ; 6(10): 1245-1258, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34465900

RESUMEN

Respiratory failure is associated with increased mortality in COVID-19 patients. There are no validated lower airway biomarkers to predict clinical outcome. We investigated whether bacterial respiratory infections were associated with poor clinical outcome of COVID-19 in a prospective, observational cohort of 589 critically ill adults, all of whom required mechanical ventilation. For a subset of 142 patients who underwent bronchoscopy, we quantified SARS-CoV-2 viral load, analysed the lower respiratory tract microbiome using metagenomics and metatranscriptomics and profiled the host immune response. Acquisition of a hospital-acquired respiratory pathogen was not associated with fatal outcome. Poor clinical outcome was associated with lower airway enrichment with an oral commensal (Mycoplasma salivarium). Increased SARS-CoV-2 abundance, low anti-SARS-CoV-2 antibody response and a distinct host transcriptome profile of the lower airways were most predictive of mortality. Our data provide evidence that secondary respiratory infections do not drive mortality in COVID-19 and clinical management strategies should prioritize reducing viral replication and maximizing host responses to SARS-CoV-2.


Asunto(s)
Líquido del Lavado Bronquioalveolar/microbiología , COVID-19/terapia , Respiración Artificial , SARS-CoV-2/patogenicidad , Inmunidad Adaptativa , Adulto , Anciano , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Carga Bacteriana , Líquido del Lavado Bronquioalveolar/inmunología , Líquido del Lavado Bronquioalveolar/virología , COVID-19/inmunología , COVID-19/microbiología , COVID-19/mortalidad , Enfermedad Crítica , Femenino , Hospitalización , Humanos , Inmunidad Innata , Masculino , Microbiota , Persona de Mediana Edad , Oportunidad Relativa , Pronóstico , Estudios Prospectivos , Sistema Respiratorio/inmunología , Sistema Respiratorio/microbiología , Sistema Respiratorio/virología , SARS-CoV-2/inmunología , Carga Viral
19.
Front Immunol ; 12: 719077, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34394127

RESUMEN

The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 is a major global public threat. Currently, a worldwide effort has been mounted to generate billions of effective SARS-CoV-2 vaccine doses to immunize the world's population at record speeds. However, there is still a demand for alternative effective vaccines that rapidly confer long-term protection and rely upon cost-effective, easily scaled-up manufacturing. Here, we present a Sindbis alphavirus vector (SV), transiently expressing the SARS-CoV-2 spike protein (SV.Spike), combined with the OX40 immunostimulatory antibody (αOX40) as a novel, highly effective vaccine approach. We show that SV.Spike plus αOX40 elicits long-lasting neutralizing antibodies and a vigorous T-cell response in mice. Protein binding, immunohistochemical, and cellular infection assays all show that vaccinated mice sera inhibits spike functions. Immunophenotyping, RNA Seq transcriptome profiles, and metabolic analysis indicate a reprogramming of T cells in vaccinated mice. Activated T cells were found to mobilize to lung tissue. Most importantly, SV.Spike plus αOX40 provided robust immune protection against infection with authentic coronavirus in transgenic mice expressing the human ACE2 receptor (hACE2-Tg). Finally, our immunization strategy induced strong effector memory response, potentiating protective immunity against re-exposure to SARS-CoV-2 spike protein. Our results show the potential of a new Sindbis virus-based vaccine platform to counteract waning immune response, which can be used as a new candidate to combat SARS-CoV-2. Given the T-cell responses elicited, our vaccine is likely to be effective against variants that are proving challenging, as well as serve as a platform to develop a broader spectrum pancoronavirus vaccine. Similarly, the vaccine approach is likely to be applicable to other pathogens.


Asunto(s)
Antígenos de Diferenciación/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Virus Sindbis/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Cricetinae , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Virus Sindbis/genética , Linfocitos T/inmunología , Vacunación
20.
bioRxiv ; 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34373852

RESUMEN

Antibody responses serve as the primary protection against SARS-CoV-2 infection through neutralization of viral entry into cells. We have developed a two-dimensional multiplex bead binding assay (2D-MBBA) that quantifies multiple antibody isotypes against multiple antigens from a single measurement. Here, we applied our assay to profile IgG, IgM and IgA levels against the spike antigen, its receptor-binding domain and natural and designed mutants. Machine learning algorithms trained on the 2D-MBBA data substantially improve the prediction of neutralization capacity against the authentic SARS-CoV-2 virus of serum samples of convalescent patients. The algorithms also helped identify a set of antibody isotype-antigen datasets that contributed to the prediction, which included those targeting regions outside the receptor-binding interface of the spike protein. We applied the assay to profile samples from vaccinated, immune-compromised patients, which revealed differences in the antibody profiles between convalescent and vaccinated samples. Our approach can rapidly provide deep antibody profiles and neutralization prediction from essentially a drop of blood without the need of BSL-3 access and provides insights into the nature of neutralizing antibodies. It may be further developed for evaluating neutralizing capacity for new variants and future pathogens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...